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imperfections in manufacturing and the 
resulting defect scattering.[1,8]

Photonic crystals (PCs) are meta-
materials fabricated from mesoscopic 
building blocks by self-assembly or by 
lithography.[9–14] In contrast to the case 
of atomic or molecular crystals, these 
building blocks are not identical. There-
fore, all photonic crystal materials pos-
sess some intrinsic degree of disorder 
due to surface roughness, size dispersion, 
stress-induced deformations, in addition 
to defects, stacking faults, or crystal grain 
boundaries. The influence of disorder 
is often so strong that the interaction of 
the propagating wave with the periodic 
Bragg planes competes with scattering on 

similar length scales. In early work on opal photonic crystals, 
the manifestation of intrinsic defects has been discussed and 
a plethora of studies found that it is nearly impossible to fab-
ricate perfect crystals made by self-assembly of colloids.[15] As a 
consequence, artificial opals of polystyrene spheres or air holes 
in TiO2 (titanium dioxide) display diffuse multiple-scattering 
in tandem with (multiple) Bragg reflection.[16,17] Similar obser-
vations have been made for quasi-crystals.[18] Improved self-
assembly protocols and lithography have led to higher quality 
photonic crystals, but despite the progress made, imperfections 
still play a significant role.[13,19] While disorder in photonic crys-
tals is often considered a nuisance, it also highlights the rich 
and fascinating interplay between defect states, wave tunneling 
and percolation, random diffuse scattering, and directed Bragg 
scattering of light.[20–25] Moreover, the interaction between the 
band structures and defect scattering might facilitate the obser-
vation of other critical coherent transport phenomena such as 
Anderson localization of light. In a seminal paper published 
in 1987, Sajeev John suggested the presence of localized defect 
states close to the band edge of a photonic crystal due to mul-
tiple scattering and a reduced density of states.[26] Finally, defect 
states can be introduced in a photonic crystal deliberately to 
implement a particular function, such as for optical sensing 
applications, lasing, or optical circuitry.[1,27] Controlling and 
understanding the role of defects and disorder in photonic crys-
tals is thus of paramount importance.

Here, we report on a study about intrinsic and added defects 
in PCs[28] fabricated in a polymer resist by direct laser writing 
(DLW), see Figure 1. The tight control over the position and size 
of the defects we have sets our study apart from earlier work on 
intrinsic[29] or added defects in opals.[30,31] We moreover model 
the defects induced scattering of these structures without any 
fit parameter.

Photonic crystals display partial or full band gaps that become more pro-
nounced with rising refractive index contrast. However, imperfections in the 
material cause light scattering and extinction of the interfering propagating 
waves. Positive as well as negative defect volumes may contribute to this 
kind of optical perturbation. In this study, 3D woodpile photonic crystals are 
fabricated and characterized with a pseudo-bandgap for near-infrared optical 
wavelengths. By direct laser writing, defects are introduced in the periodic 
structure at selected positions. It is shown that defect scattering can be mod-
eled by considering the difference between the disordered and the regular 
structure. The findings pave the way toward better control and understanding 
of the role of defects in photonic materials that will be crucial for their 
usability in potential applications.
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1. Introduction

Dielectric materials with a periodic variation of the refractive 
index display photonic stop bands for a monochromatic optical 
wave propagating in specific directions.[1] For a perfect crystal, 
destructive interference always leads to vanishing transmis-
sion in the stop band irrespective of the refractive index con-
trast.[2] The Bragg length LB is a measure for the number of 
crystal layers penetrated by the incident beam and it is directly 
related to the scattering strength of the crystal layers.[3,4] Above 
a certain threshold refractive index contrast,[1,5] the propaga-
tion of light can be inhibited in all directions, opening a full 
photonic bandgap (PBG) with a Bragg length LB eventually 
becoming comparable to the lattice constant. Bandgaps in one 
and 2D photonic crystals are now widely employed in applica-
tions such as supercontinuum fiber lasers[6] and for data pro-
cessing using optical modules based on 2D silicon photonic 
crystal technology.[7] Technological applications for 3D PBG 
bandgap materials offer great potential in lasing, wave-guiding, 
light-harvesting and even optical computers. In practice these 
3D-functionalities remained elusive, mainly due to the role of 
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2. Results

By DLW in a polymer resist[12,32–35] (Photonic Professional, 
Nanoscribe, Germany), we fabricate high-quality woodpile (WP) 
photonic crystals displayed in Figure 1d,e. For optimal results, 
we use the IP-Dip photoresist (Nanoscribe, Germany), refrac-
tive index nIP-Dip  = 1.53.[36] We add defects to our crystals to 
probe the effect of disorder on the photonic properties of the 
PCs. We introduce two types of defects: positive and negative 
defects, see Figure 1, and we place these defects uniformly over 
the sample volume with a variable defect number density ρ. We 
position the defects randomly, constrained by the condition that 
two defects cannot overlap.

The basic WP-structures are composed of horizontal 
arrays of parallel rods, where d denotes the in-plane distance 
between two rods. Alternating layers are rotated by 90° and 
shifted by d/2 every two layers. Hence, the structure repeats 
itself over a distance dz corresponding to four layers in the  
stacking direction �zz. We use a ratio d dz =/ 2  which results in 
a face-centered-cubic-lattice (FCC, see Figure   S3, Supporting 
Information). The rods of adjacent layers slightly overlap, as 
indicated in Figure  1a–c. For our samples, the in-plane-dis-
tance between rods, which is equal to the rod-segment length, 
is set to d = 1.2 μm. We note that smaller in-plane-distances can 
be readily achieved,[12] but it would not add benefit to the cur-
rent work. All the samples have a total size of 70 × 70 × 8.5 μm3  
which corresponds to five lattice constants of the conven-
tional cubic unit cell of the FCC lattice (20 layers of rods) 
in the �zz direction (i.e., perpendicular to the rods long axis, 
see Figure  1a). Note that one rod-segment corresponds 

to the primitive unit cell lattice constant, see Figure   S3,  
Supporting Information. By locally enlarging (reducing) the 
thickness of a rod-segment, Figure  1b,c, we create positive 
(negative) defects. We denote the relative increase or decrease 
of the rod cross sectional area, or volume, with κ. We control  
the thickness of the rods by setting the power of the  
DLW-laser below or above the default power used to fabricate 
the woodpile crystal.

Due to the asymmetric shape of the DLW focal volume, set 
by the point-spread function of the DLW-microscope objective, 
the cross-section of the rods is elliptical with an aspect ratio 
of nearly three. For each laser power used, we measure the 
rod cross sectional area with a scanning electron microscope 
(SEM); see Experimental Section. For the crystal, we find for 
the long axis a = 0.42 μm, and the short axis b = 0.15 μm.
Figure  2 shows the reflectance and transmittance spectra 

recorded for a series of samples. The measurements were per-
formed by Fourier transform infrared spectroscopy (FTIR, 
Bruker Vertex 70, and Hyperion Spectrometer). As we use 
a Cassegrain mirror-objective in the FTIR-microscope, the 
light is transmitted and detected along a hollow cone with 
an acceptance angle between θmin = 15° and θmax = 30° 
with θmean = 22.5° compared to the Γ  − Xz-direction of the 
crystal (see Figure   S5, Supporting Information for the FCC-
Brillouin zone scheme). We measure the spectra averaged 
over an area of about 40 × 40 μm2 and consider wavelengths 
between 1.5 and 2.7 μm while for wavelengths larger than 
2.7 μm, the polymer absorbs light (for details see Experi-
mental Section). We use a silver-coated mirror as a reference  
for the reflectance spectra. To calibrate the transmittance, we 

Figure 1. Computer generated renderings of a) a woodpile structure, b) a woodpile structure with positive defects, c) a woodpile structure with nega-
tive defects. Scanning electron micrograph of polymer woodpile structures fabricated by DLW, with d) positive (rod cross section area +280%, image 
taken at an angle of 52°), and (e) negative defects (–64%, 45° tilted). Scale bars are 5 μm for (d), 1 μm for (e).
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measure the spectrum of the bare glass substrate next to the 
samples. For each set of fabrication parameters, we produce 
several samples, and each curve in Figure  2 represents an 
average over three to five different sample realizations. The 
darkest lines show the spectra of the crystalline samples, that 
is, without any added defects. The transmittance (reflectance) 
displays a profound dip (peak) indicating the presence of 
a pseudo-gap in the chosen incident direction. We find that 
by increasing the number density ρ of defects, the peak of 
the reflectance and the dip of the transmittance become less 
marked meaning that the quality of the bandgap is affected 
by the presence of defects. In our experiments, we see that 
the pseudo-band gap disappears continuously with no clear 
threshold. The situation would be different for a full PBG 
where defect states are initially isolated, and then percolate 
once the defect density exceeds a certain threshold.[21] Inter-
estingly, we also observe that the peaks are shifted to higher 
(lower) wavelengths when increasing the density of positive 
(negative) defects. To study this effect quantitatively, we plot 
in Figure  3 the position of the reflectance maxima for dif-
ferent defect sizes and defect densities against the polymer 
filling fraction φ of each sample (see Experimental Section 
for the method used to estimate the filling fraction). Interest-
ingly, we find that all the data collapse on a master curve. The 
pseudo-gap center wavelength increases roughly linearly with 

φ, independent of whether the defect volume or number den-
sity is varied to achieve a certain φ-value.

We corroborate this finding’s accuracy by band structure cal-
culations with MPB (MIT Photonic Bands)[37] for WP photonic 
crystals with different filling fractions. For all the filling frac-
tions, the calculations, shown as red crosses in Figure 3, were 
performed for elliptical rods with a constant aspect ratio of 
a/b  = 0.42/0.15 = 2.8. To accurately compare the simulations 
with the measurements using a Cassegrain-objective, we pro-
ceed as follows. We calculate the intersections of the gaps for all 
the directions making an angle θeff relative to the Γ − Xz direc-
tion, where θeff is defined by the incident direction (due to the 
Cassegrain objective, θ0 = 22.5°) and the refraction at the inter-
face (due to the effective medium, calculated for each filling 
fraction using the Maxwell–Garnett formula), for details see 
Experimental Section.

Our results suggest that with increasing filling fraction φ, 
the MPB-value of λG increases and its evolution follows the 
Maxwell–Garnett effective refractive index mixing formula.[38] 
The latter predicts a roughly linear increase of the effective 
refractive index neff with φ over the studied range, see the 
gray line in Figure 3. This shift of λG can be explained as fol-
lows. The reflectance maximum is due to Bragg backscat-
tering at a scattering angle Θ ≃ 180° where the momentum 
transfer q k G

� � �
= Θ ≡2 sin[ /2]  matches a reciprocal lattice vector 

G
�

. Our results suggest that the wave number, and thus the 
phase delay, is defined by the effective medium |k| = 2πneff/λG. 
Thus, the maxima λG scale with the effective refractive index 
of the medium neff such that λG/neff remains constant. Inter-
estingly, we find this effect to be surprisingly robust against 
defect scattering.

Figure 2. Experimental reflectance (solid lines) and transmittance 
(dashed lines) of woodpile structures, thickness L = 8.5 μm, with dif-
ferent defect number densities. The density ranges from 0 to 0.24 μm−3. 
a)  Spectra for negative defects (κ = −74 % cross section surface), b) 
for positive (κ = +158%). The blue ellipses in inset show the standard 
dimensions of the WP-rods, while the orange ellipses show the dimen-
sions the negative (a) and positive (b) defects. Each curve is averaged 
over three to five samples to take into account the sample to sample 
variations.

Figure 3. Center position (circles) of the reflection peak marking the posi-
tion of the photonic pseudo-gap in the presence of defects. Each color 
corresponds to a different defect size. The values of κ denote the volume 
of the defects in units of the unperturbed rod-segment. −100% indicates 
a missing link, +310% means the interstitial space between parallel rods 
is entirely filled when two defects are adjacent, marking the two extreme 
cases. The error bars correspond to the standard deviation of the different 
realizations for equal fabrication parameters. The vertical line indicates 
the filling fraction of the WP crystal. In red: pseudo-gap span (area) and 
center (crosses) calculated with MPB for the WP crystal with elliptical 
rods as a function of the rods filling fraction keeping the rods aspect ratio 
constant. The grey line shows the expected scaling of the gap wavelength 
assuming a linear dependency with the Maxwell-Garnet effective refrac-
tive index neff.
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Next, we study the scattering by the induced defects. We use 
a modified Beer–Lambert’s law to extract the scattering mean 
free path ℓs from the simultaneous reflection R and transmis-
sion T measurements of the PC,

T L R L L �( ) ( ) exp / sα ( )+ = −  (1)

where L is the thickness of the sample. This relation is valid 
before the onset of diffraction and for negligible absorption.[39,40] 
Both conditions are met in our case over the range of wave-
lengths studied; see also Experimental Section for more details. 
The additional factor α in Equation  (1) takes account of sys-
tematic errors in the calibration procedure. The bare substrate 
and the sample covered substrate deviate in two ways. First, 
the sample acts as an anti-reflection coating since the effective 
index neff ≃ 1.17 lies in between glass and air, which leads to 
an increased optical transmission T. Second, the sample thick-
ness, L ≃ 8.5 μm, is only a small multiple of the wavelength, 
which results in Fabry–Pérot interferences between the paths 
reflected by the sample top and the WP/substrate interface. 
As a consequence, we observe slow oscillations in T(λ) which 
complicates proper calibration. To achieve a model independent 
calibration, for each set of samples, we take averages of T + R 
between λ = 2.45 and 2.55 μm. Over this wavelength range, the 
T(λ) + R(λ) curves are flat for the crystal structure and thus 
T  + R ≃ α, see also figure S7, Supporting Information. We 
find typical values of α between 1.037 and 1.055. From the data 
shown in Figure  2, and using Equation  (1), we extract ℓs as a 
function of λ as shown in Figure 4.

3. Discussion

We first note that the turbidity of the WP crystals, given by the 
inverse of the scattering mean free path, 1/ℓs, is finite, and it 
rises in the low-wavelength regime. The residual scattering 
from WP crystals, observed previously in ref. [12], is caused 
by intrinsic roughness, small displacements, undulations, and 
deformations in the crystal. The turbidity of a crystal in the 
presence of artificially added defects is therefore determined 
by defect scattering and by intrinsic scattering. In Figure  5, 
we illustrate how we can understand the scattering from our 
materials as a sum of scattering from the WPs and the added 
defects. If we assume that these two effects contribute indepen-
dently, we can express the measured turbidity 1/ℓs as follows[41]

= +1 1 1

s s,0 s,ind� � �
 (2)

where 1/ℓs,0 corresponds to the intrinsic scattering and 1/ℓs,ind 
to the artificial defects scattering. The same expression can be 
derived in the frame of the classical theory for the resistivity 
of ordinary metals.[42] In the latter case, the resistivity is con-
trolled by the scattering mean free path of electrons: 1/ℓs,0  
corresponds to the residual resistivity contribution, due to 
intrinsic defects, and 1/ℓs,ind to the temperature dependent con-
tribution ∝T, also known as the Wiedemann–Frantz law, due to 
electron-phonon scattering.

Both for negative (Figure 4a) and positive (Figure 4b) defects, 
we see that the induced turbidity increases with the defect 

Figure 4. Turbidity (inverse of the scattering mean free path) of woodpile 
structures with a) negative and b) positive defects. The different colors 
of the curves encode the defect number density ρ in μm−3 in the sample. 
The samples are the same as in Figure 2.

Figure 5. The measured turbidity of the samples is the sum of two con-
tributions, the intrinsic turbidity of the woodpile crystals (due to DLW 
imperfections) on one hand, and the induced turbidity due to the artifi-
cially added defects on the other hand.
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number density ρ. In Figure 6, we plot 1/ℓs,ind (=1/ℓs − 1/ℓs,0) at  
a selected wavelength (λ0  = 1.57 μm) as a function of the 
defect number density. We plot the data for negative 
(Figure  6a) and positive (Figure  6b) defects of different 
size. The induced turbidity increases linearly with ρ for 
small defect number densities, as expected for independent 
random scatterers. For higher concentrations, positional cor-
relations and proximity effects lead to deviations from the 
linear dependence.[43–45] This sound result supports that 
using Equation (2) and Equation  (1) to determine 1/ℓs,ind is 
justified. The turbidity of a medium consisting of identical 
uncorrelated scatterers is given by 1/ℓs = ρσ, where σ denotes 
the total scattering cross-section of a scatterer. Therefore, the 
initial slope of 1/ℓs(ρ) is a measure for the total scattering 
cross section of defects

ρσ=1

s,ind
defects

�
 (3)

In Figure  7, we report the values for σdefects extracted 
in the low-ρ regime as a function of r a b=d d d  where ad 
and bd are the long and short axis of the defect rod-seg-
ments. For all the samples studied, we report data for five 
different wavelengths.

Inspired by earlier work on disordered opals,[29] we model 
the defect scattering in the frame of the first Born, also known 
as Rayleigh–Gans–Debye (RGD) scattering, approximation. We 
hypothesize that we can treat the WP crystal as an effective, 
homogeneous background medium, and scattering arises from 
the local density differences, as shown in Figure 5. To this end, 
we calculate the known RGD-expression for the total scattering 
cross-section of a hollow cylinder Csca,hc with a length d  = 1.2 
μm equal to a rod segment.[46]

For simplicity, in our calculations, we consider scattering 
from hollow cylinders with nIP-Dip in air (nair = 1), and limiting 
radii r a b= ⋅d d d , r a b 0.25= ⋅ = µm. For positive defects 
rd > r, while for negative defects rd < r. We explicitly take into 

account the optical geometry imposed by the Cassegrain objec-
tive. Therefore, we calculate Csca,hc for an angle between the 
incoming beam and the cylinder axis ζ = 90° − <θeff > =71.3°. 
θeff is the angle after refraction by the effective medium (neff) 
when the incident angle is 22.5°. We calculate <θeff > by aver-
aging θeff over the different neff obtained by varying the filling 
fraction over the experimental range (0.3 < φ < 0.5). The effec-
tive refractive index neff also enters via the effective wave-
number keff = 2πneff/λ0.

In contrast to earlier studies on disordered opals,[16,29] our 
entire modeling predictions (shown as lines in Figure  7) are 
fit-parameter free. Overall, we find a good agreement between 
the data and the model: the calculated scattering cross-sections 
follow the trend of the experimental data. The agreement 
between theory and experiment is nearly quantitative for the 
higher wavelengths where the intrinsic scattering is negligible, 
and the transmission of the unperturbed crystal is high, sign-
aling a trend toward an effective homogeneous medium.

In conclusion, in this study, we have quantified the effect of 
intrinsic and induced defects on photonic crystals’ optical prop-
erties. We demonstrate that both the bandgap position and its 
quality are simultaneously affected by defect scattering. The 
study presented in this work gives essential guidelines on how 
to quantify and model defect scattering. Our study also pro-
vides a modeling framework for diffuse scattering in PCs that 
lays the ground toward more complex disordered PCs based 
photonic materials. Such materials, based on higher refractive 
index building blocks, could become crucial to reach conditions 
for Anderson localization of light.[47] To achieve this goal, one 
will need to increase the refractive index contrast of these struc-
tures, for example by using a double inversion technique.[48]

4. Experimental Section
Rod Size Measurement: The lateral size of the rods, or the short axis of 

the elliptical cross section, can be assessed by taking a top-view electron 
micrograph. The measurement of the long axis of the elliptical rods 

Figure 6. Induced turbidity for different defect volumes measured at 
λ0 = 1.57 μm for a) negative and b) positive defects as a function if the 
defects number density. Each color corresponds to a different relative 
change of the rod cross section for a single defect with respect to 
the default rod. Lines are linear fits done on the first points.

Figure 7. Total scattering cross-section of defect scatterers. Symbols 
show σdefects extracted from the slopes of the curves (ρℓs,ind)−1 (solid lines 
shown in Figure  6). The effective radius of the defect rod-segments is 
denoted by r a b= ⋅d d d . The lines show the scattering cross sections of 
the hollow cylinders Csca, hc with limiting radii rd and 0.25r a b= ⋅ = µm 
(the standard rod size in the crystal, vertical dashed line).
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inside the structure was more difficult. We tried to obtain a side-view 
of the rods using ion-beam milling but this posed problems due to the 
melting of the polymer when exposed to the ion beam. To circumvent this 
problem, single rods were written with different laser powers between 
two large pillars, as shown in Figure S1, Supporting Information. This 
procedure allowed us to take SEM-images of the rods created by using 
different laser powers in DLW, from the top and at an inclined angle of 
45°. The short and long axis were measured several times at different 
locations. The FWHM of the grey value profile of a line perpendicular 
to the rod was taken to determine the size. A mean value was obtained 
by measuring the size on different positions on the same image and we 
get a standard deviation of about 7%, which is attributed to the uneven 
surface of the rods and the limited accuracy of the procedure. The 
results are summarized in Table S1, Supporting Information.

Absorption Spectrum of the IP-Dip Polymer: Figure   S2, Supporting 
Information shows the absorption spectrum for a glass substrate coated 
with a L = 50 μm and L = 100 μm layer of developed IP-Dip photoresist. 
The effective thickness of the woodpile crystals was Leff = 2.96 μm at a 
filling fraction of 35% for a total thickness of t = 8.5 μm. The absorbtion 
spectra of thick layers of photoresist (L ⩾ 50 μm) were analyzed, since 
for micrometer thick homogeneous samples the signal was very weak 
and masked by strong Fabry–Perot oscillations. From the L  = 50 μm 
and L  = 100 μm measurement, the average attenuation coefficient μ 
was extracted using T = exp (− μL) and the expected transmittance for 
L  = Leff was calculated (dashed green curve in Figure  S2, Supporting 
Information). It was found that overall absorptive losses were small in 
the wavelength-band between λ  = 0.9 and 2.6 μm. Absorptive losses 
attenuate the transmitted power by less than 1.3% for a IP-Dip sample 
of thickness Leff.

Assessment of the Polymer Filling Fraction: The overlap between 
alternating layers of rods was taken into account in order to accurately 
estimate numerically the filling fraction of each sample. To this end, 
the unit cell of the digital representation of the woodpile structure was 
discretized, and every volume element (or voxel) belonging to at least 
one rod was labelled. Then the ratio between the labeled and unlabeled 
voxels was calculated to get the filling fraction. Using this method, φ0 
was calculated for the unit cell of the perfect woodpile, but also φ0, d 
for the unit cell containing a single defect. The parameters of the rods 
were taken from the rod size measurements (see Table S1, Supporting 
Information). For a sample having a defect density ρ, the filling fraction 
of the sample was then φ = (1 − ρV0)φ0 + ρV0φ0, d where V0 is the volume 
of the unit cell.

Band Structure Calculations: The woodpile has a FCC lattice, see  
Figure   S3, Supporting Information. Its band structure was calculated 
in the first Brilloin zone (see figure S5, Supporting Information for 
the geometry). Usually, the (pseudo)gap was observed in the Γ  − Xz  
direction. Because of the Cassegrain objective, transmission of 
light having an incident angle between 15° and 30° was measured. 
The measurements were therefore compared with band structure 
calculations for the same angles. To achieve this, calculations of the 
band structure were performed in the Γ − Pθ(ϕ) directions as a function 
of the azimuthal angle ϕ for a fixed polar angle of nθ θ= arcsin( / )mean eff  
with θmean  = (15°  + 30°)/2 due to the Cassegrain objective and neff(φ) 
calculated with the Maxwell–Garnett mixing formula[38] (See Figure  S5, 
Supporting Information and its legend for the geometry).

Figure   S4, Supporting Information shows the band structure of the 
perfect crystal (elliptical rods, a  = 0.42 μm, b  = 0.15 μm, d  = 1.2 μm)  
for different Γ  − Pθ(φ) directions. θ is constant and φ is equally  
distributed between 0 and 90° (for symmetry reasons, there was no need 
to calculate for all angles between 0 and 360° because the structure 
is invariant by a rotation of 90° around the �zz  axis). The bandgap 
corresponds to the intersection of the bandgaps calculated for 
φ ∈ [0, 90°].

Beer–Lambert’s Law: Beer–Lambert’s law, Equation  (1), was used 
to calculate the light scattering mean free path for a fixed height of 
structures. One could argue that a more precise way to determine 
the light scattering mean free path would be to measure T at different 
heights and fit ℓs to In T = −L/ℓs. However, doing so would require a 

vast number of samples, and thus we decided to measure different 
heights of structures for one defect rate only. Moreover, L-dependent 
measurements are not necessarily more accurate. Measurements at 
small L are less precise due to a lack of scattering. Results for sample 
thicknesses  L  > 10 μm can be affected by additional defect scattering 
due to strain-induced deformations, commonly observed in DLW. 
For a comparison, we first determine ℓs  for our standard fixed height 
(red to green lines of Figure S6, Supporting Information). Next, we 
obtain ℓs from a linear fit to T = −L/ℓs for each wavelength (inset of 
Figure S6, Supporting Information shows the data points and the fit at  
λ0 = 1.95 μm). We generally find good agreement between the fit to 
ln T = −L/ℓs and the ℓs values calculated using just one height L.

We have verified that the spectral variation of the absorption coefficient 
can be safely neglected. We can write T L R L L L �α µ+ = ′ − −( ) ( ) exp( )exp( / )s  
with Lα µ α≡ − ′exp( ) . We find that variation of µ (λ) for Leff = 2.96 μm  
is very small and its influence on T(λ) amounts to only a fraction of 
a percent and is thus negligible as shown in Figure S7, Supporting 
Information.

Rayleigh–Gans–Debye Scattering of a Hollow Cylinder: The form factor 
of a finite cylinder of radius r and length d (see Figure   S8, Supporting 
Information for the geometry), illuminated by a beam making an 
angle ζ with its axis oriented along the �zz  axis, as found in Bohren and 
Huffman,[46] is

1
c 2

/2

/2

0 0

2
( cos sin )f

r d
e dz d e d

d

d
ikAz

r
ik B C∫ ∫ ∫π

ρ ρ ψ=
π

ρ ψ ψ

−

− − +  (4)

The integration is done in cylindrical coordinates (ρ, ψ, z), for which 
the �zz  axis is oriented along the direction of the cylinder. Note that in 
this calculation, to take advantage of the radial symmetry, the cylinders 
are oriented along the �zz  axis, whereas in the rest of the paper they are 
perpendicular to the �zz  axis. k  = 2πneff/λ0 (where neff is the effective 
refractive index of the medium, and λ0 the wavelength in vacuum of the 
incoming beam) is the wave number. Finally,

cos sin cosA ζ θ ϕ= +  (5)

B θ ϕ= sin sin  (6)

cos sinC θ ζ= −  (7)

2 2M B C= +  (8)

where θ ∈ [0, π] and ϕ ∈ [0, 2π] are the spherical coordinates angles for 
scattered wave.

To calculate the form factor of a hollow cylinder, one just has to 
perform the second integration between r1 and r2 (the inner and outer 
radii of the cylinder) instead of 0 and r. Performing all the integration,

f
d r r

r J kr M r J kr M
kM

kAd
kA

θ ϕ ζ =
−

−
( , ; )

2
( )

( ) ( )2sin( /2)
hc

2
2

1
2

2 1 2 1 1 1  (9)

is obtained, where J1 is the Bessel function of the first kind of order 1.
The RGD scattering cross section for a hollow cylinder making an 

angle of ζ with respect to the incoming beam is then defined through 
the integral over all solid angles Ω

( )
4

( 1) ( , ; ) cos cos sinsca,hc
4

4

2
2 2

hc
2 2 2 2C k m v f d∫ζ

π
θ ϕ ζ θ ϕ ϕ= − + 

π
 (10)

The integrations over θ and ϕ were performed numerically.
In this paper, the incoming light made an angle ζ π θ= −

2 eff  with 
the axis of the cylinders, where nθ θ= arcsin( / )eff mean eff  and neff should 
depend on the filling fraction. Because each curve and point plotted 
in the main text Figure  7 was deduced from measurements done  
varying the filling fraction, neff was therefore kept a constant and is 
equaled to the value of the Maxwell–Garnett refractive index of the 
perfect structure.
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